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Difference Densities by Least-Squares Refinement: Fumaramic Acid 
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The electron-density distribution in a crystal is expressed in parametric form suitable for least-squares 
refinement against the X-ray intensities. The model rests on an expansion of the difference density in a 
basis of conveniently shaped deformation functions, both spherical and non-spherical, centred on the 
several atoms. The expansion coefficients are subject to refinement along with the atomic coordinates 
and atomic or molecular vibration parameters. As a test of the method, the difference density in fumara- 
mic acid has been mapped by least-squares refinement, which reveals far more detail than could be 
obtained from the same data by conventional methods. No fully objective assessment of accuracy is 
available, but comparison with difference densities found in other structures by more standard procedures 
supports the validity of the model and its potential for extracting a maximum of information from the 
experimental data. 

Introduction 

Experimental information about electron-density disti- 
butions in covalently bonded molecules has come main- 
ly from X-ray diffraction studies on single crystals. 
These have revealed significant departures from the 
conventional spherical-atom model, usually in the form 
cf residual features in difference-density maps following 
a spherical-atom refinement. Such a procedure has 
great diagnostic value but is severely deficient for 
quantitative mapping of actual charge distributions. Its 
major failing, well illustrated in a careful study by 
O'Connell, Rae & Maslen (1966), is the tendency of 
the refinement process to efface much of what the 
difference map is expected to reveal. The charge re- 
distribution attendant on chemical bonding is largely 
absorbed in the structural parameters, especially the 
vibration tensors, leaving the final difference map arti- 
ficially flattened. In addition, any Fourier map suffers 
from possible distortion by a few reflexions that may 
have been inaccurately measured or entirely omitted. 
Finally, the experimental difference map, at best, shows 
the difference density smeared by thermal vibration. 
This hampers comparison with theoretical or even with 
other experimental results. 

Attempts to overcome the worst of these difficulties 
have included the use of theoretically derived non- 
spherical atomic form factors (e.g. McWeeny, 1954; 
Stewart, Davidson & Simpson, 1965). Studies by Cady 
& Larson (1965), Rae & Maslen (1965), Fritchie (1966), 
Verschoor (1967), and Rietveld, Maslen & Clews (1970) 
have introduced such form factors without, in most 
instances, so decisively improving the agreement be- 
tween observed and calculated structure amplitudes, 
whether gauged by discrepancy indices or by difference 
maps, as to vindicate entirely the theoretical f curves. 

A more flexible approach has been adopted by Daw- 
son and others in studies on diamond and similar high- 
symmetry structures (Weiss, 1964; Dawson, 1965, 1967; 

Dawson & Sanger, 1967; Kurki-Suonio, 1968, 1969; 
McConnell & Sanger, 1970). The success of these stu- 
dies in providing quantitative difference-density infor- 
mation has encouraged the hope that similar techniques 
can be usefully applied to structures of lower symmetry. 
Preliminary efforts in this direction (Mason, Phillips & 
Robertson, 1965; Hirshfeld & Rabinovich, 1967) con- 
centrated on specific difference-density features, such 
as charge excess in the middle of a covalent bond or the 
contraction and polarization of bonded hydrogen atoms. 
More general parametric models of the charge dis- 
tribution have only recently been tried (Hartman 
& Hirshfeld, 1969; Maslen, 1969; Willoughby & 
Coppens, 1969; Coppens, Csonka & Willoughby, 
1970) and little experience with these has yet been 
reported. 

Any such model seeks to represent the actual charge 
distribution in terms of a limited number of adjustable 
parameters that can be evaluated, along with the stan- 
dard structural parameters, by least-squares refinement 
against the X-ray data. Formulation of a particular 
model necessarily imposes a compromise between a too 
restrictive a priori constraint and an excessive number 
of adjustable parameters. In seeking such a compro- 
mise we can be guided by several quite general conside- 
rations: 
(a) Since the spherical-atom model has proven such a 
widely applicable approximation and is certain to be 
used in the initial stages of any structure analysis, it is 
convenient to retain this approximation as a major 
component of any improved model, letting the adju- 
stable parameters describe departures from the spheri- 
cal-atom charge distribution. 
(b) Evaluation of the requisite derivatives for least- 
squares refinement will be simplest if the parameters 
are chosen as linear expansion coefficients, i.e. if the 
charge deformation is expanded in a fixed basis of 
density functions whose coefficients are the variable 
parameters. 
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(c) Appreciable charge displacements will generally be 
confined to the vicinity of the atoms, within distances 
comparable with their covalent radii, and will vary 
smoothly everywhere except very near the atomic cen- 
tres. It is reasonable, then, to choose basis functions 
centred on the several atoms and falling smoothly to 
zero not very far from their centres. The adoption of 
such localized basis functions preserves the customary 
and very convenient partitioning of the total charge 
distribution into atomic fragments. 
(d) If the basis functions are made approximately 
orthogonal to one another, statistical correlations a- 
mong their coefficients are likely to be satisfactorily 
small. This is important if we wish to build up a de- 
formation model of the requisite flexibility by succes- 
sively adding new basis functions or to test the possi- 
bility of transferring deformation coefficients between 
similar structures. It may also be crucial to the conver- 
gence of an iterative least-squares refinement. 
(e) A judicious choice of the shapes of the basis func- 
tions and of their spatial orientations can greatly facili- 
tate the exploitation of symmetry arguments for mini- 
mizing the number of independent parameters to be 
adjusted. For example, if a molecule possesses a non- 
crystallographic plane of symmetry or pseudo-symme- 
try, it may be convenient to choose basis functions that 
are, singly or in pairs, symmetric with respect to this 
plane. 

Charge-deformation model 

Such considerations have led us (Hartman & Hirsh- 
feld, 1969) to write the electron density in a stationary 
molecule as 

O=Qs+60 , 

where Os is the sum of spherical free-atom densities, 
centred at the time-average nuclear positions. The de- 
formation density ~0 is expanded as 

rio = ~ cz~z 
l 

in a basis of smoothly varying functions 01, also centred 

on the several atoms. The scattering factor f for each 
atom is then computed as 

f = f s + ~ czg~, 
1 

where fs is the spherical free-atom form factor and the 
sum comprises the Fourier transforms ~0z of those defor- 
mation functions 0l that are centred on the particular 
atom. Our treatment applies to each such scattering 
factor the usual anisotropic temperature factor 

t = exp ( -  2n 2 h, U *~ hi). 

This rectilinear harmonic approximation neglects any 
rotational motion of the non-spherical atom, since the 
vibration tensor U describes pure translation only, but 
this neglect should introduce no serious error if the non- 
spherical deformations are small and reasonably com- 
pact and the thermal vibrations are mainly translatio- 
nal. 

For the expansion functions 0z we have elected to 
experiment with a set of functions that are related to 
spherical harmonics but whose symmetry properties 
may be somewhat more convenient for some applica- 
tions. Thus, we choose angular functions of the general 
form cos n 0~, where n = 0, 1, 2, or 3 and the polar angle 
0k is measured from one of a specified set of (n+ 1) 
(n+2)/2 polar axes. The selected functions comprise 
one spherically symmetric function with n = 0 ;  three 
functions with n = 1 directed along three mutually per- 
pendicular axes L,; six functions with n = 2 whose polar 
axes lie along the face diagonals L, + L~ of the cube 
built on the three axes L,; and ten functions with n = 3, 
of which six are directed along these same face diago- 
nals and four lie along the body diagonals. These are 
multiplied by the fairly arbitrarily chosen radial func- 
tions 

Rm(r)=r  m exp (-c~r) ,  

where m > n and the constant c~ is usually fixed so as to 
place the maximum of the function R3(r), on a given 
type of atom, at a distance r = 3/c~ that is about 1/3 to 
1/2 of a typical bond length from the origin. 

Table 1. The deformation functions Qt(r), before orthogonalization, and their Fourier transforms q)z(s) 

These are expressed in terms of the dimensionless variable x = 2ns/oc, where s = 2 sin 0/2, and the angle ~,~ between the reciprocal 
radius s and the polar axis from which the angle 0~ is measured. 

0~(r) ~z(s) 
tX3 

ro = ~ - ~  e -~r  

o~ 4 
r l  = ~ re  -~r  

0~6 
r3 = 4 ~  r3e-~r  

ct5 
v~ = - ~  r2e -~r  c o s  2 0/,: 

or4 
)~ = ~ re -~r cos Ok 

0~6 
IZk = - ~  r3e-ctr c o s  3 0/¢ 

(1 + X2) -2 

(1 - -  x2 /3 ) / (1  + X2) 3 

(1 - -  2X 2 + X4/5) / (1  + X2) 5 

(1 +x2-  6x 2 cos 2 V~)/(1 + X 2 )  4 

2ix cos q/k/(1 + X2) 3 

3ix COS v/el3(1 + x 2) - 8x 2 Cos 2 V/~]/(1 + x2) s 
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The largest set of functions we have tried on a single 
atom comprises the following 22 products of radial and 
angular functions: 

~3+m 
rm = 4~(2+m)! Rm (m=O, 1, 3) spherically symmetric 

~5 
vk = 32~ R2 cosZ0k (k= 1, 2, . . .  6) centrosymmetric 

2e = 16~ R1 cos 0k (k= 1, 2, 3) ~'anti-centr°symmetric 

°~6 R3cos3Ok(k= 1,2,.. • 10)| 
#k = 64~ l 

The normalizing factors appearing here cause the inte- 
grals of the even functions rm and vzc to equal unity. 
Thus the coefficients of these functions represent the 
net charges added to the corresponding regions, in 
electrons. The Fourier transforms of the listed func- 
tions are readily derived by the methods introduced by 
McWeeny (1951). They are presented algebraically in 
Table l and plotted in Fig. 1. 

Consideration (d) above impels us to transform the 
basis functions to make them more nearly orthogonal 
to one another. With a suitable choice of the exponen- 
tial factors ~, the functions centered on different atoms 
will not overlap much and so will be sufficiently ortho- 

Table 2. Orthogonal basis functions derived from the 22 deformation functions Ql defined in Table 1 

Funct ions  2], 22, 23 assumed to have their polar  axes along Lj, L2, L3, respectively. Funct ions  Vl to v 6 and/ /1  to / /6  are directed 
successively along LI +L2,  L~ - L 2 ,  L2 + L3, L 2 - L 3 ,  L 3 + L I ,  L 3 - L 1 ,  while//7to//10 are directed along L] + L 2 + L 3 ,  LI - L z - L 3 ,  
L 2 - L 3 - - L 1 ,  L 3 - L 1 - L 2 .  Or thogonal  funct ions v2" to v6', //2' to //6', and/ /8"  to/ /10 '  may  be derived f rom v~' , / /1 ,  and/ /7 ' ,  re- 
spectively, by appropr ia te  sign reversals and permuta t ion  of  indices. Even functions rm" and vz/are  normal ized to one electron;  
normal iza t ion  of  odd funct ions 

/ ,0  t 

t . l  t 

E3  t 

O l  t 

,;1,1' 

//1' 

//7' 

2k' and #k' is arbi trary.  

r 0 

= -- r0 + 2rl 
= -~-r0 -- ~rl + 2rj 

= -- ~r0 + ~Zrl + 10r3 - 4"910vx - 2-601 v2 - 2" 122(v3 + v4 + v5 + v6), etc. 

=21, etc. 

= -- 0"483(21 + 22) + 1 "584//i + 0"247(p3 +//4 + 115 q-//6) ']- 0"901 (//10 --//7), etc. 

= -- 0"235().t + 22 + 23) -- 0-901 (//1 +//3 +//5) + 2" 177//7 -- 0"392(//8 +//9 --I-//10), etc. 

- -  e" • 
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Fig. 1. Four ie r  t ransforms ~0t of  de fo rmat ion  basis funct ions Or, plotted against  dimensionless pa ramete r  x = 2ns/o~. Solid curves:  
t ransforms of  spherical functions r0, rl,  and r3; broken curves:  t ransform of  vg in directions parallel (v") and perpendicular  (v ±) 
to polar  axis" dot ted  c ,ryes: ampli tudes  of  imaginary  t ransforms of  2g and / /k  parallel to polar  axes (perpendicular  componen t s  
of  these t ransforms vanish). Tenfold expansion of  ordinate  scale at x = 1.5. 
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gonal. On each atom, the even and the odd functions 
are orthogonal to one another by symmetry. What re- 
mains is to orthogonalize separately the nine even and 
the thirteen odd functions on each atom. This ortho- 
gonalization may be achieved, for each set, in two 
steps. First, a Schmidt orthogonalization is performed 
on the three spherical functions rm and one of the 
quadratic functions v~, in that order. By symmetry, the 
matrix of this transformation is the same for all six 
functions v~. This matrix thus yields three new spheri- 

' ' the former cal functions r m and six new functions vk, 
being orthogonal to one another and to each of the 
latter. The six new functions v~, are then subjected to a 
symmetrical orthogonalization (Lrwdin, 1948). In this 
process they lose their axial symmetry but they retain 
the useful property of transforming into one another un- 
der all symmetry operations of the cube. It is primarily 
this property that recommends the present functions 
over the more familiar spherical harmonics. In analogous 
manner the ten cubic functions/t~ are first mad e orthogo- 
nal to the three linear functions 2~ and then symmetri- 
cally orthogonalized to each other. If the original 22 
functions share a common value of the exponential fac- 
tor c~, the indicated procedure leads to the orthogonal 
functions listed in Table 2. 

Evidently, the function space spanned by the 22 
basis functions on a given centre is independent of the 
choice of axes L~. Any rotation of these axes induces a 
simple transformation among themselves of the three 
linear functions 2~, of the six quadratic functions v~, 
and of the ten cubic functions/z~. The choice of axes is 
thus immaterial except for the facility that a particular 
choice may offer in the application of symmetry argu- 
ments. In practice, we normally define the three axes 
at a given atomic centre so that they are appropriately 
oriented with respect to supposed axes or planes of 
local symmetry. Such symmetry is then expressed by 
the vanishing of certain deformation coefficients or by 
the equality of sets of related coefficients. In this way 
the number of independently variable coefficients for a 
given atom may be reduced from 22 to 15 if the atom 
is supposed to lie in a mirror plane, 12 if on a twofold 
axis, 10 if at a position of symmetry mm, etc. Also, two 
or more identical atoms in similar environments may 
share identical deformation coefficients provided their 
coordinate axes are chosen concordantly. The appli- 
cation or relaxation of such constraints, as illustrated 
below, is one of the important ways of adapting the 
general deformation model to the degree of flexibility 
appropriate to a particular refinement. 

The proposed deformation functions have admittedly 
been designed without regard to their compatibility 
with the well-established formalism of L.C.A.O. molec- 
ular-orbital theory. Unlike the atomic-orbital-product 
functions advocated by Stewart (1969) and employed 
in several recent studies (e.g. Maslen, 1969; Willoughby 
& Coppens, 1969; Coppens, Csonka & Willoughby, 
1970), they do not readily lend themselves to compari- 
sons with population analyses based on molecular- 

orbital wave functions. In defence of our more empiri- 
cal strategy, it may be observed that neither theory nor 
experiment fully supports the expectation that molec- 
ular difference densities can be best represented via a 
minimal basis of frozen atomic orbitals. On the con- 
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Fig. 2. Hartree-Fock difference densities (molecular electron 
density minus sum of spherically averaged ground-state at- 
omic densities) computed from molecular wave functions of 
McLean & Yoshimine (1967). Contour interval 0.1 e,~-3, 
(a) HCCH, (b) LiCCH, (c) HCN, (d) NCCN. 
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trary, comparisons on first-row diatomic molecules 
(Kern & Karplus, 1964; Smith & Richardson, 1965; 
Ransil & Sinai, 1967) have demonstrated the sensitivity 
of calculated difference densities to the size, composi- 
tion, and optimization of the basis sets employed. Other 
studies (Nesbet, 1964; Cade, Sales & Wahl, 1966; 
Bader, Henneker & Cade, 1967) have emphasized the 
importance of including polarizing functions of d a n d f  
symmetry, which are entirely absent in the atomic bases, 
for computations aimed at consistently interpretable 
molecular charge distributions. Thus it is arguable that 
a too dogmatic adherence to a rigid L.C.A.O. con- 
ceptual framework may hinder more than it furthers 
our search for an economical parameterization of ex- 
perimentally observable difference densities. 

Accurate theoretical studies do, on the other hand, 
indicate a very remarkable degree of transferability of 
difference densities between similar bond types in quite 
diverse chemical environments. Fig. 2, based on Har- 
tree-Fock wave functions computed by McLean & 
Yoshimine (1967), shows that the C--C-H portions of 
HCCH and LiCCH are virtually indistinguishable, as 
are the C- -N bond regions of HCN and NCCN. Such 
comparisons suggest that it may ultimately be feasible 
to synthesize a quite precise electron-density map of a 
large molecule out of fragments transferred from simp- 
ler molecules. They also appear to justify our reliance 
on arguments based on local symmetry and pseudo- 
symmetry for the imposition of simplifying constraints 
on the deformation model. 

Application to fumaramic acid 

The proposed model has been tested with X-ray dif- 
fraction data from a crystal of fumaramic acid (Ben- 

H(I) 

N 

H(2 0(I) 

~ i - ~ 1 2  ) 

C ( 3 ) ~  H(4) 

,=============~ ( 4 ) 
0(2) 

013) 

H(5) 
Fig. 3. Molecular formula of fumaramic acid, showing atomic 

numbering. 

ghiat, Kaufman & Leiserowitz, 1971). The data were 
collected on a Siemens automatic diffractometer with 
Mo Kc~ radiation through balanced filters at room tem- 
perature. They comprised a total of 1178 independent 
reflexions, of which 8 had net intensities smaller than 
half their statistical standard deviations and were trea- 
ted as unobserved. Somewhat over half the measured 
reflexions were within the limiting sphere for Cu Ke 
radiation. Beyond this sphere only reflexions with cal- 
culated structure amplitudes (after a preliminary struc- 
ture refinement) above a preset level were recorded. 
Almost all intensity data represent averages of 2 or 4 
symmetry-related reflexions, including Friedel pairs. 
Exhaustive comparison within equivalent sets provided 
an objective assessment of the experimental precision 
of the measured intensities and allowed the rejection of 
a few erroneous data. 

The unit cell contains two molecules in general posi- 
tions related by a twofold screw axis in space group 
P21. Each molecule contains 13 atoms (Fig. 3). The 
deformation model thus permits a maximum of 
13x22=286 independent deformation coefficients. 
This number was, in fact, reduced to 85 by several 
rather drastic approximations: 
(a) the deformations at each atom were assumed sym- 
metric to reflexion in a plane defined by the vectors to 
two neighboring atoms (approximately the mean mo- 
lecular plane); 
(b) for each of the atoms O(1), O(2), and N, a second 
mirror plane was assumed, perpendicular to the first 
and intersecting it in the appropriate C=O or C-N bond 
axis; 
(c) deformation coefficients were shared between the 
pair of atoms C(2) and C(3), in correspondingly orien- 
ted local coordinate systems (related essentially by a 
local centre of symmetry midway between the two 
atoms), and similarly for the pair O(1) and 0(2); 
(d) identical parameters were shared by all five hydro- 
gen atoms, which were assumed axially symmetric 
about their respective covalent bond axes; moreover, 
the eleven basis functions containing the radial depen- 
dence R3 = r 3 exp (-c~r) were omitted for the hydrogen 
atoms. 

With these simplifications, the independent defor- 
mation parameters consisted of 

15 for C(1), 
15 for C(4), 
15 for the pair C(2) and C(3), 
10 for the pair O(1) and O(2), 
15 for O(3), 
10 forN,  
5 for the hydrogen atoms. 

These 85 deformation coefficients were refined by an 
iterative least-squares routine on the Golem A compu- 
ter, together with the scale factor k, 38 atomic coor- 
dinates (one y coordinate being fixed to locate the 
origin along the polar b axis), and 20 rigid-body molec- 
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ular vibration parameters; i.e. the atomic vibration 
tensors U were made explicitly dependent on the 20 
independently variable components of the molecular 
vibration tensors T, L, and S (Schomaker & Trueblood, 
1968). The spherical-atom form factorsfs for C, N, and 
O were taken from Berghuis, Haanappel, Potters, 
Loopstra, MacGillavry, and Veenendaal (1955). For 
hydrogen the standard ground-state f curve was used, 
i.e. 

fR( s )= (1  + z?a~s2) -2, 

where s = 2 sin 0/2. 
The exponential factors a occurring in the radial 

functions were not adjustable in the least-squares re- 
finement. However, some experimentation was per- 
formed with alternative values in an effort to establish 
reasonable ranges for these quantities. This experimen- 
tation consisted of several parallel refinements, which 
we distinguish by the labels A, B, C, and D. In most 
instances a single value of ~ was used for all functions 
on a given type of atom. Thus, refinement A had 
values of 4.0, 4.5, 5.0, and 5.5 A -1, respectively, for 
hydrogen, carbon, nitrogen, and oxygen atoms. In re- 
finements B and C these were increased to 4.0, 5.5, 6.0, 
and 6.5 A -1. Refinement D had values of 2.0, 4.7, 5.0, 
and 5.3 A -1 for all except the cusp functions r0, for 
which the indicated values were doubled. 

A standard refinement 0, with no deformation func- 
tions, was performed in the same fashion for compa- 
rison. 

In examining the results of the several refinements 
we have four principal kinds of information to com- 
pare: 
(a) final discrepancy indices R = El Fo-klFdl / Y Fo 
and 

r = ~.. w(F~-k21Fcl2)~/~wF4; 

(b) final values of the parameters and their estimated 
variances and covariances; 
(c) the deformation density fi4 computed from the final 
expansion coefficients; 
(d) the residual difference density A4 synthesized from 

the Fourier coefficients AF= (1/k)Fo- Fc after inclusion 
of the deformation functions in the evaluation of Ft. 

Taken together, the results do not lead to a single 
best choice of deformation parameters. They do, how- 
ever, help in identifying electron-density features that 
are fairly independent of reasonable variations in the 
deformation model, in estimating the range of validity 
of the information derivable via this model, and in 
suggesting ways of enhancing the reliability of such 
information. 

First to be computed were refinements A and B. Of 
these, the discrepancy indices (Table 3) appear t o  
favour B, with its larger exponential factors e. However, 
this refinement was suspect for several reasons. Most 
disturbing was the large drop in the scale factor k, 
compared with refinements 0 and A. The deformation 
map 60B [Fig. 4(b)] showed large positive peaks at all 
atomic positions. Both indications made it appear that 
the deformation parameters were trying, not only to 
modify the spherical-atom density, but partly to replace 
it; i.e. that the actual scale factor k'  (defined by the 
experimental conditions, though unknown) was larger 
than the least-squares value k and that the true electron 
density, accordingly, was approximated by (k/k') 
(@s + 60) with k/k'  < 1. 

Some fairly sharp peaks and troughs near the atomic 
centres in the residual difference densities A4a and A4B 
suggested that significant charge-deformation features 
might yet remain to be incorporated properly in the 
model. Therefore, the exponential factors c~ of the r0 
functions were doubled, relative to the remaining func- 
tions, in the hope that these more sharply peaked func- 
tions might better represent the charge distribution near 
the atomic centres. A bit of experimentation with the 
exponential factors, guided by an effort to keep the 
scale factor near the value assigned to it by refinement 0, 
led to refinement D. This yielded discrepancy indices in- 
termediate between those from refinements A and B. The 
deformation map 641) was quite similar to 64.4 except in 
the immediate vicinity of the atomic centres (Fig. 4). 
The residual difference density A4D was not noticeably 
flatter than the corresponding maps from the two pre- 

Table 3. Discrepancy indices R and r, and final values of  representative parameters with their estimated 
standard deviations, as derived from alternative least-squares refinements 

Refinement 0 A B C D 
R 0.04395 0.02771 0.02645 0-02648 0.02721 
r 0.00629 0.00180 0.00163 0"00163 0.00175 
k 12.794 +0.033 12.933 +0.895 10.095 + 1"666 (12-794) 12-707 ___ 1"566 
C(2)-H (/~) 0"946 +0.034 1"117 +0.046 1.023 +0.038 1.042 +0-040 1-121 +0"035 
C(3)-H (/~) 1"003 +0-036 1-047 +0.043 0"950 +0"036 0.966 +0.037 1.027 +0.031 
N-H(1) (A) 0.861 +0.027 0.983 +0.036 0.857 +0.034 0.871 +0"035 0.921 +0.031 
N-H(2) (A) 0.778 +0.039 0"954 +0.049 0.852 +0.040 0"864 +0.041 0-925 +0-041 
O-H (A) 0"898 __+0.026 0"912 +0.039 0"846 +0.033 0.858 +0.033 0-910 +0.033 
TH (/~k2) 0.0227 _+ 0.0004 0.0213 _+ 0.0007 0.0198 _+ 0.0012 0-0216 +_ 0.0003 0.0210 _+ 0.0010 
T zz (A 2) 0.0187 + 0.0016 0.0206 + 0.0008 0.0179 _+ 0.0014 0.0197 _+ 0.0008 0.0200 _+ 0-0011 
T33 (/~2) 0.0252 + 0.0028 0.0258 + 0.0012 0.0242 ___ 0.0023 0.0259 + 0.0020 0-0252 + 0.0018 
L11 (rad 2) 0.0220 + 0.0005 0-0200 + 0.0008 0.0199 + 0.0008 0.0199 + 0.0008 0.0201 + 0.0008 
L22 (rad z) 0"0006 + 0"0001 0"0008 _+ 0.0002 0.0007 _+ 0.0002 0.0007 _+ 0.0002 0-0007 _+ 0-0002 
L33 (rad z) 0.0017_+0.0001 0.0016_+0.0001 0.0016_+0.0001 0.0016_+0.0001 0-0016+0.0001 
q (e) - -  --11"25 + 5"76 -- 7"61 -- 40.32 
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vious refinements. Also, its most prominent features 
did not appear to conform to the assumed local sym- 
metry. It was therefore concluded that any significant 
improvement in the model would require a relaxation 
of the symmetry constraints or some more drastic 
change in the nature of the basis functions rather than 
any modification of the numerical parameters alone. 

A final experiment, refinement C, consisted of a 
repetition of refinement B except that the scale factor 
k was arbitrarily fixed at the value given by refinement 
0. The discrepancy indices were scarcely increased by 
this constraint, as could be anticipated from the estima- 
ted standard deviation of k as derived from refinement 
B. The resulting deformation density floe [Figs. 4(c) 
and 5] was generally similar to fiOA and ~0D. 

Inspection of the discrepancy indices (Table 3) shows 
that the introduction of the deformation model, with 
no matter which set of exponential factors, has signi- 
ficantly improved the agreement between Fo and Fe as 
compared with refinement 0. The near equality of the 
discrepancy indices for the four refinements A to D 
implies that the experimental data do not permit a 
precise determination of the best values for the exponen- 
tial factors. Comparison of the refined values of the 
deformation coefficients with their respective estimated 
standard deviations leads to a similar conclusion for 
these parameters; in all refinements, the final values of 
very few deformation coefficients differ significantly 
from zero. However, it is not the numerical values of 
the individual parameters that interest us especially 
but rather the deformation density 60 that they collec- 
tively define. Our basis set may, in principle, be suffi- 
ciently redundant to define the deformation density 
quite sharply even though the individual parameters 
are very imprecisely determined. If so, we should expect 
the several deformation maps to be closely similar in 
appearance despite wide variations in the parameters. 
In part this is just what is observed. 

The results show, however, that large statistical 
correlations occur not only among the several defor- 
mation parameters but between these and the structural 
parameters as well. This effect is illustrated in Table 3, 
which examines the interaction between the deforma- 
tion model and some of the more sensitive standard 
parameters. The strong correlation between the defor- 
mation parameters and the scale factor, especially evi- 
dent in refinement B, is not surprising. Its significance 
is considered further below. Other standard parame- 
ters expected to interact strongly with the deformation 
coefficients are the hydrogen coordinates and the mole- 
cular vibration parameters. Thus it is encouraging that 
the positions of the hydrogen atoms appear slightly 
more plausible when the charge deformation is explicitly 
included in the model than when it is excluded. This is 
one of the indications that the deformation model has 
permitted a more meaningful refinement of the struc- 
ture. The effect on the vibration parameters is illustra- 
ted by the behavior of the diagonal components of the 
molecular translation and libration tensors T and L. 

These are evidently less sensitive to interactions with 
the deformation parameters than might have been 
supposed. Undoubtedly, this result is related to the 
presence of a large proportion of high-angle reflexions, 
which help to distinguish between thermal smearing of 
the atomic peaks and a redistribution of charge among 
the deformation functions of the present model. As a 
consequence, the estimated standard deviations of the 
translation components T *j appear, contrary to expec- 
tation, to be often smaller in the presence of the defor- 
mation parameters than in their absence. (This com- 
parison of standard deviations estimated from the 
residuals and the inverted least-squares matrix implies 
no ascription of objective significance to such estimates). 
Presumably, although no calculations were performed 
to test the matter, the interactions would have been far 
greater had individual atomic vibration tensors been 
refined independently or had our basis set included very 
much more sharply peaked cusp functions. It appears, 
also, that some of the larger statistical correlations 
between vibration and deformation parameters are 
mediated to an appreciable extent through their mutual 
interactions with the scale factor. Refinement C, in 
which the scale factor was fixed at the value derived 
from refinement 0, yielded values of T*J near those from 
refinement 0 but with smaller estimated deviations. 
Comparisons of T *j and of their standard deviations 
between different refinements can, however, be mis- 
leading because they refer to different molecular ori- 
gins, chosen in each case to make S symmetric and 
minimize the trace of T (Schomaker & Trueblood, 
1968). 

Calculated deformation densities 

Two problems arise in connexion with the explicit eval- 
uation of the deformation density 6Q from the least- 
squares parameters. First, no constraint was applied in 
the refinement of the deformation coefficients to keep 
the net electron count constant, either for each atom 
or for the molecule as a whole. Consequently, if we 
simply summed the deformation functions with their 
least-squares coefficients we should obtain a deforma- 
tion map with a non-vanishing integral. For example, 
the coefficients of refinement D imply a net deficit of 
over 40 electrons per molecule, the quantity denoted by 
q in the last line of Table 3. A simple way around this 
difficulty is to add one more basis function, with a 
uniform density distribution throughout space, and 
assign it a coefficient that restores the correct electron 
count for the unit cell. This device is supported by the 
observation that it leads consistently to near-zero 
values of fi0 at positions far from any atoms. For re- 
finement D the extra term adds a uniform density of 
0.33 e.A-3, not a negligible correction. 

Secondly, any map obtained by direct summation 
would be largely dominated by the cusp densities at the 
atomic centres. These are just the positions where the 
calculated values of rio are least meaningful, both be- 
cause of the large uncertainty in the scale factor and 
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vibration parameters and because the detailed forms 
of  the cusp densities manifest themselves experimen- 
tally well beyond the reciprocal radii at which our data 
were recorded. It thus appeared preferable to moderate 
these peaks by a process of double Fourier inversion. 

'Structure factors' were computed for a structure con- 
sisting of the deformations alone (omitting the free- 
atom contributions fs to the scattering factors) with 
vanishing vibration parameters. These were then inser- 
ted as coefficients in a Fourier synthesis routine to 
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Fig. 4. Computed deformation density in mean molecular plane of fumaramic acid, derived from four least-squares refinements. 
(a) 5OA: contour interval 0.2 e.A -3, (b) 50n: contours at -0.5, 0, 0.5, 1, 2, 3, 4, 5 e.A -3, (c) (~oc; contour interval 0.2 e./~ -3, 
(d) fi0D: contour interval 0.2 e.A -3. 
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produce the required deformation maps (Figs. 4 and 5). 
For these computations a reciprocal-radius cut-off of 
2.31 .~.-1 was used, corresponding to the highest-angle 
reflexions recorded experimentally. Comparison be- 
tween a typical 60 map derived in this manner and one 
evaluated subsequently by direct summation from the 
same parameters showed that the only appreciable 
effects of series termination in the former map were the 
expected suppression of detail near the atomic centres 
and the introduction of spurious ripples in the zero 
contours. 

The indirect method of computation had the inci- 
dental virtue of allowing the effect of thermal smearing 
to be readily simulated. Replacement of the zero vibra- 
tion parameters used in the computation of 60 by the 
appropriate rigid-body parameters obtained from the 
least-squares refinement led to the calculation of a 
vibrationally smeared deformation density T60. Such 
a map, displaying the calculated deformation density 
as it would appear in a harmonically vibrating molecule, 
could be compared directly with the conventional dif- 
ference density A00 from refinement 0. 
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Fig. 5. C o m p u t e d  de fo rma t ion  densi ty foe f r o m  ref inement  C, 
c o n t o u r  interval  0.2 e.A-3. Sect ions pe rpend icu la r  to approx-  
imate  molecular  plane,  con ta in ing  the bonds :  (a) C ( I ) - N ,  
(b) C(2)-C(1),  (c) C(1)=O(1), (d) C(3)-C(4),  (e) C(4)=O(2), 
( f )  C(2)=C(3), (g) C(4)-O(3).  

Examination of the several maps shows that at most 
positions except within about 0.3 A of the atomic centres 
the three refinements A, C, and D all display very much 
the same pattern of charge deformation. Refinement 
B is harder to interpret but it, too, shows qualitative 
agreement with the most prominent features of the 
other three. At the atomic centres, the four sets of 
results are so discordant, not only in magnitude but 
even in sign, that no significant conclusions are possible. 

Features most consistently found in the several 6Q 
maps include localized peaks centred near the mid- 
points of the covalent bonds. Typical maxima of these 
peaks, as derived from refinements A, C, and D, are" 

in the C-C single bonds 0.4 to 0.6 e.~ -3 
in the C=C double bond 0.6 to 0.8 
in the C-OH bond 0.3 
in the C=O bonds 0.4 to 0.5 
in the C-N bond 0.2 or less 
in the C-H and O-H bonds 0.6 
in the N-H bonds 0.8 to 1.0 

Most of these features occur also in 6QB, with peak 
densities usually some two to three times higher. 

The C-C and C--C bond peaks are consistently well 
resolved and symmetrically positioned between the 
bonded atoms. They are nearly spheroidal, having 
their greatest extension, especially in the C=-C bond, 
normal to the molecular plane. The C-OH and C=-O 
peaks are more diffuse; the latter extend in a bowl- 
shaped ridge around the oxygen atoms, ending in sub- 
sidiary maxima of about 0.25 e.A -3 in the molecular 
plane near what may be regarded as the lone-pair re- 
gions. The C-N peak, when identifiable at all, is very 
diffuse. It varies in shape and position and is generally 
accompanied by a second much sharper peak near the 
nitrogen end of the bond. The peaks in the bonds to 
hydrogen may be sharp or broad. They often extend 
asymmetrically to enclose the hydrogen atoms, which 
may lie on secondary maxima of 0.2 to 0.4 e.A -3. 

Equally interesting are the regions of charge defi- 
ciency revealed by the 60 maps. Such troughs are lo- 
cated near the carbon atoms, on the sides opposite 
their bonding directions as well as along the normals to 
the molecular plane. They vary greatly in position, in 
shape, and in maximum depth, and tend to show up 
most prominently in refinements B and C, which had 
the largest values of ~ (in functions other than r0). The 
carboxylic carbon atom, in particular, is surrounded, 
in 60B and 6Oc, by a trigonal bipyramidal array of five 
troughs, some exceeding - 1 . 0  e.A -3 in depth, at dis- 
tances about 0.4 A from its centre. The three other 
carbon atoms show similar troughs, about - 0 . 7  e.A-3, 
at 0.3 to 0.4 A above and below the molecular plane 
(Fig. 5). 

Near the oxygen and nitrogen atoms are less pro- 
nounced regions of charge depletion. This may be 
correlated with the relative poverty of their covalent 
bond peaks, compared with the bonds between carbon 
atoms. There are indications that the oxygen atoms 

A C 2 7 B  - 5 
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may lose charge from regions close to their centres. All 
~0 maps show steep gradients at the oxygen positions, 
in the directions of the adjacent carbon atoms. Thus, 
in refinements A, C, and D, distinct troughs occur 0.05 
to 0.2/k beyond the oxygen positions, away from the 
carbon, while refinement B places the oxygen atoms on 
positive peaks that fall off most steeply on their far 
sides. In addition, all OQ maps show diffuse regions of 
charge depletion at greater distances behind the three 
oxygen atoms. The apparent polarization of charge, 
especially near the oxygen nuclei, towards the carbon 
atoms to which they are linked correlates well with a 
consistent pattern in the C=-O and C-OH bond lengths; 
these appear 0.006 to 0.018/~ longer in the four re- 
finements based on the deformation model than in 
refinement O. 

Validity of results 

Inquiry into the reliability of the computed deformation 
densities may usefully begin with a comparison be- 
tween the results of the deformation model and those 
obtained by the conventional difference density method. 
For this purpose we can most readily compare the 
vibrationally smeared deformation density TOO with 
the conventional difference density AQ0. We expect 
these maps to differ in two, generally opposite, ways. 
First, the least-squares map TrQ will be smoother be- 
cause of the suppression of difference-density features, 
spurious or genuine, that do not conform to the con- 
straints of our deformation model. On the other hand, 
it may show enhanced detail, compatible with this 
model, that was disguised in the conventional refine- 
ment by adjustments in the coordinates and vibration 
parameters, In comparing, for example, TOQz~, the 
vibrationally smeared deformation density from refine- 
ment D, with AQ0 (Fig. 6), we find clear evidence of both 
these effects. 

Much of the fine-scale detail in AQ0, typical of back- 
ground noise, is entirely absent from T6QD, which has a 
far smoother overall appearance. At the same time, 
well-defined peaks and troughs occur in TOQD, especi- 
ally at the atomic positions and in the covalent bond 
regions, that are but faintly suggested, or not at all, in 
AQ0. It is consistent with our expectations that the 
most prominent of these latter features are found at 
the atomic centres and in the bonds to hydrogen; 
clearly they reflect the statistical interactions of the 
deformation parameters with the vibration components 
and the hydrogen coordinates. 

We must, therefore, ask two sorts of question about 
the least-squares deformation densities ~Q. How much 
genuine information about charge migration, perhaps 
dimly suggested in the erratic wiggles of AQ0 that we have 
dismissed as noise, has been suppressed by our arbitrary 
imposition on the data of a too restrictive deformation 
model? And how much of the charge deformation 
displayed in our ~Q maps arises simply from large stati- 
stical correlations between the standard parameters and 
the deformation coefficients, which permit false values 

of one sort of parameter at the expense of compensating 
errors elsewhere? 

To answer the first question, we examine first the 
residual difference density AO remaining after the de- 
formation refinement. This should show any further 
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refinement D, with vibrational smearing. 



F. L. H I R S H F E L D  779 

charge deformation that has failed to be accomodated 
by the deformation model. We can add this residual 
density to the vibrationally smeared deformation den- 
sity T6~o and so obtain an augmented difference density 

A'~o = Tc~Q + AQ. 

The Fourier coefficients of this function are just 

1ro-r ;, A'F= k 

in which F '  c is computed from the flee-atom scattering 
factorsfs but with structural parameters derived by use 
of the deformation model. In effect, we refine the struc- 
ture by least squares, introducing the deformation 
model to overcome the systematic bias in the refinement 
of the standard parameters, and then compute a con- 
ventional difference map by subtracting spherical atoms 
at the positions and with the vibration amplitudes so 
derived. In this manner we avoid the greatest failing of 
the usual difference-density method, i.e. its self-effa- 
cing bias, without fully incurring the essential weak- 
ness of the deformation model, its pre-imposed con- 
straint. 

The residual difference maps AQ after refinements A, 
B, C, and D are all rather similar in appearance, with 
largest features about + 0.1 e . / ~  - 3 .  The locations and 
shapes of these features lack any compelling chemical 
significance. The addition, for example, of AQD to T6QD 
makes no important difference except to reduce some- 
what the magnitude and lateral extent of the two C---O 
bond peaks and to mask, in an apparently unsystematic 
fashion, the symmetry of such smaller features as the 
oxygen lone-pair maxima. Nothing in these maps sug- 
gests that appreciable loss of information has resulted 
from the use of an insufficiently flexible deformation 
model. 

A more quantitative estimate may be derived from 
values of the mean square residual in F z, measured by 

d 2 = ~ w ( F Z o - k Z i F c i 2 ) 2 / ( N - p )  , 

where w is the statistical weight of a reflexion 

w = l/crZ(ro2), 

N is the number of independent reflexions included in 
the sum, and p is the number of refined parameters. 
Refinement 0 yielded d 2 = 11.0, whereas refinements B 
and C led to d 2 = 3.1. Even if we suppose that our tests 
for internal consistency have revealed the full magni- 
tude of the experimental errors, so that a value of 
d2= 1.0 should be ultimately attainable, it is evident 
that most of the information about charge deformation 
contained in the present data has been uncovered by our 
model. 

Our second question can also be given a partly quan- 
titative answer. Any ambiguity arising out of the stati- 
stical correlations of the least-squares parameters is 
fully reflected in the computed variances and covarian- 

ces of these parameters. True, these variances were 
deduced from the residuals AF, which contain an 
appreciable component of systematic error, due to the 
limitations of the model, in addition to their random 
component. By ignoring this distinction we obtain com- 
puted variances that systematically overestimate the 
random component of error in the final parameters. 
But this simply means that in applying such an estimate 
of the random error to judge whether or not a specially 
prominent feature in our 64 map is genuine, we are 
doubly protected against the risk of too readily accep- 
ting false information. On the one hand we have over- 
estimated the standard deviation of the computed de- 
formation density arising from random experimental 
errors; on the other hand any systematic error intro- 
duced by the inflexibility of the model is more likely 
to have depressed the particular c~Q feature than to have 
enhanced it. 

Unfortunately, application of such a conservative 
criterion to our 64 maps affords us little comfort. For 
example, the estimated standard deviations of the defor- 
mation densities at the midpoints of the several carbon- 
carbon bonds, as derived from the eovariance matrix 
of refinement A or D, average between 0.2 and 0.3 
e./~ -3. So even these bond peaks, which show up con- 
sistently in all our c~Q maps, appear to be less certainly 
established than might have been hoped. The smaller 
64 features we have noted, such as the oxygen lone- 
pair maxima or some of the less pronounced troughs 
around the carbon atoms, are correspondingly less 
certain. At the atomic centres, of course, the estimated 
standard deviations are so large that no meaning at all 
is to be attached to the erratic values of 64. 

If we compute standard deviations of OQ from the 
covariance matrix of refinement C, however, the picture 
is radically different. In this refinement the scale factor k 
was fixed arbitrarily; hence the computed variances lack 
any objective significance. But they do provide a rough 
indication of the accuracy that might be achieved/fwe 
had reliable experimental measurements of the absolute 
intensities. What we find is that the estimated standard 
deviation of the deformation density 6Qc is a mere 0.05 
e./k -3 at the middle of the C=C bond, 0.04 e./k-3 at the 
midpoints of the two C-C single bonds, i.e. less than 
one-tenth the peak heights at these positions. 

The cited results appear to be quite typical, indicating 
that most of the uncertainty in the computed defor- 
mation densities is directly associated with the uncer- 
tainty in the value of the scale factor. This clearly em- 
phasizes the potential value of absolute intensity meas- 
urements. But it also means that we could, in principle, 
systematically vary the value assigned to k and so 
obtain a complete family of 6• maps analogous to c~Qc 
with the assurance that among these would be one map 
containing a highly accurate representation of the true 
deformation density. 

Comparison with results of previous studies can be 
only qualitative because of essential differences in meth- 
od. Most of the more prominent features in our 64 

A C 27B - 5* 
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maps have been well documented before in other struc- 
tures. For example, the threefold pattern of opposed 
peaks and troughs surrounding a trigonal carbon or, 
nitrogen atom has been often reported, notably in 
trinitro-triaminobenzene (Cady & Larson, 1965 ;O' Con- 
nell, Rae & Maslen, 1966), in 2,5-dimethyl-p-benzo- 
quinone (Hirshfeld & Rabinovich, 1967), in cyanuric 
acid (Verschoor, 1964, 1967; Coppens & Vos, 1971), 
and in penta-m-phenylene and hexa-m-phenylene (Irn- 
gartinger, Leiserowitz & Schmidt, 1970). The symme- 
try of this pattern largely precludes its effacement, in 
conventional refinement procedures, by systematic in- 
teraction with the atomic coordinates or vibration 
parameters. On the other hand, the pair of troughs next 
to the same atoms on either side of the molecular plane 
can be more readily absorbed by a systematic under- 
estimation of the out-of-plane vibration amplitudes. 
Thus, similarly placed troughs are seen in the accurate 
low-temperature study of cyanuric acid (Verschoor, 
1967) but have not been reported in most of the other 
studies cited above. The proposed explanation con- 
flicts, however, with the observation (Coppens, 1968) 
that in s-triazine and in deuterated e-oxalic acid di- 
hydrate, X-ray diffraction yields consistently higher 
vibration amplitudes, out of plane as well as in most 
other directions, than does neutron diffraction. A 
similar difficulty confounds the interpretation of the 
troughs shown by our fi0 maps behind the oxygen 
atoms. Hints of correspondingly placed troughs may be 
found in the difference densities of 2,5-dimethyl-p-ben- 
zoquinone and of cyanuric acid, but in the latter struc- 
ture they vanished when the atoms were located by 
neutron diffraction, which yielded oxygen positions 
nearer to the neighboring carbon atoms (Coppens & 
Vos, 1971). Similarly, no such troughs were seen in e- 
oxalic acid dihydrate (Coppens, Sabine, Delaplane & 
Ibers, 1969), whose atomic positions were determined 
by neutron diffraction. 

Other features that appear more definitely estab- 
fished include the out-of-plane elongation of the peaks 
in the C=C and C=O bonds, supported by difference- 
density maps of many structures, including most of 
those cited above, and the positive difference density at 
the hydrogen positions, previously seen in 2,5-dimethyl- 
p-benzoquinone but more commonly inferred from the 
familiar pattern of anomalously small hydrogen vi- 
bration parameters (e.g. Jensen & Sundaralingam, 1964; 
Mason, Phillips & Robertson, 1965; Stewart, David- 
son & Simpson, 1965). Lone-pair peaksnear carbonyl 
oxygens have also been reported in other structures, 
most convincingly in cyanuric acid and in e-oxalic acid 
dihydrate. 

These comparisons confirm, on the whole, both the 
validity of the difference-density information obtained 
byX-ray diffraction and the broad transferability of such 
information among quite dissimilar molecules, They also 
encourage the hope that the present deformation model 
can be made to yield results as reliable as the quantity 
and quality of the experimental data allow. 

Further developments 

One of the easiest ways of extending the flexibility of 
the deformation model is by a relaxation of some of the 
symmetry constraints. However, an attempt to abandon 
the assumption that the two carbonyl oxygen atoms 
are identical and conform to local m m  symmetry (an 
assumption that ignores a difference of 0.04 A between 
the two C=O bond lengths as well as an asymmetric 
disposition of hydrogen bonds) and to assign inde- 
pendent deformation coefficients to hydrogen atoms 
bonded to carbon, to nitrogen, and to oxygen made a 
scarcely appreciable difference in the final results. The 
assumption of molecular rigidity, in the face of the de- 
viation of atom C(2) by 0.06 A from the mean molec- 
ular plane, is highly dubious but probably necessary 
to prevent a catastrophic interaction between atomic 
vibration and deformation parameters. 

More drastic modifications of the model might in- 
clude the introduction of higher-order angular functions, 
experimentation with alternative radial dependences, 
e.g. replacing exp(-er)  by exp(-yr2), and treating 
e, or y, as an adjustable parameter. These changes 
would bring our model into line with the work of the 
Dawson school on diamond (Dawson, 1967; McCon- 
nell & Sanger, 1970). 

Obvious experimental improvements include the 
measurement of absolute intensities, work at lower 
temperature, collection of more extensive data at large 
reciprocal radii, and ever greater pains to eliminate 
systematic as well as random errors. A most promising 
approach is the parallel investigation of the same struc- 
ture by both X-ray and neutron diffraction (Coppens, 
1967; Adrian & Feil, 1969; Duckworth, Willis & Paw- 
ley, 1969; Coppens, Sabine, Delaplane & Ibers, 1969; 
Willoughby & Coppens, 1969; Coppens & Vos, 1971). 

Finally, the quality of the results obtained may de- 
pend critically on the judicious choice of crystal struc- 
tures investigated. The proposed deformation model 
should succeed best with a molecule of high non-crys- 
tallographic symmetry, which assures a favourable ratio 
between the number of independent reflexions and the 
number of parameters needed for an adequate descrip- 
tion of the charge deformation. Similarly, choice of a 
highly rigid molecule is important in permitting the im- 
position of rigid-body constraints on the vibration pa- 
rameters. Also, it is clearly desirable, for the present, 
to concentrate on light-atom structures, in which the 
relative magnitude of the charge deformation we are 
exploring is likely to be maximal. 
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Methylene dithiocyanate, CH2(SCN)2, forms monoclinic crystals in space group 12/c with four mol- 
ecules in a unit cell of dimensions a--6"667, b=8.042, c=11-101 /~, fl= 105"25 °. The molecules are 
required by the space group to have symmetry 2. Three-dimensional film data were refined by least- 
squares methods to a conventional R index of 7-3 %. The bond distances are: S-CH2, 1.808 (6); S-CN, 
1.677 (9); C-N, 1" 194 (12)/~. The bond angles are: C-S-C, 98.2 (4); S-C-N, 176.4 (10); S-C-S, 115.0 (5) °. 
An intermolecular distance of 3-17 (1)/~ between nitrogen and sulfur atoms on adjacent molecules sug- 
gests a weak intermolecular interaction. The intermolecular environments of sulfur and selenium atoms 
are compared in a number of compounds containing these atoms plus cyanide groups. 

This investigation was motivated by a knowledge of 
the crystal structures of the isostructural trio: sulfur 
dithiocyanate (Feher & Linke, 1964), selenium dithio- 
cyanate (Ohlberg & Vaughn, 1954), and selenium disel- 
enocyanate (Aksnes & Foss, 1954). In all three of these 
compounds intermolecular distances shorter than the 
sum of the associated van der Waals radii were observed 

between nitrogen atoms and sulfur or selenium atoms. 
Each nitrogen atom appeared to participate in three 
intermolecular interactions, one with a bridging heavy 
atom, and the others with the heavy atoms in two dif- 
ferent SCN or SeCN groups. The observed molecular 
symmetry of these molecules in the solid is m, i.e. both 
cyanides lie on the same side of the plane determined 


